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FOREWORD
The SPS System Definition Study was initiated in June of 1978. Phase lof tAhis.eﬁort was

completed in December of 1978 and was reported in seven volumes (Bosing document number
D189-25037-1 through -7). Phase Il of this study was completed in December of 1979 and was

. completed in five volumes (Boeing document number D180-25461-1 through -5). The Phase HI

of this study was initiated in Jamuary of 1920 and is concluded with this set of study results
published in five volumes (Beeing documem number 0180-25959-3 thrcmﬂh -5)

Volume 1 - Executive Summary
Volume 2 - Final Briefing
Volume 3 - Laser SPS Analysis
- Volume b - Solid State SP5 Analysis
Volume 5 - Space T ransponation Analysis

These studies are a part of an overa!i SBS evaluation effort spansored by the U.' S, Depar t-
ment of Energy (DOE) and the Nauon;«:! Aeronautics and Space Administration (NASA)

This serics of contractual studies were pey fo'mnd by the Large Space Systems Group of the
Boeing Acrospace Company (Gordon Woodcock, Study Manager). The study was managed by’
the Lynden B, Johnson Spate Center. The Contracting Officer is David Bruce. The
Contracting Officer’ s Representative and the study techmca) manager is Tony Rad*ﬁmg

_The subconiractors on this study, were the Gru‘nmm Aeraspace Company (Ron M cCaffrey,
Study Man’wu) and »&atx Sciences Northwest (Dr. Robert Taussig, Study Manag,er)
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TRANSPORTATION SYSTEMS ANALYSES
1.0 INTRODUCTION AND SUMMARY

This report describes an investigation of alternative transportation options for the solar
power satellite. The options include alternative Earth-to-Orbit transportation and further
examination of electric orbit-to-orbit systems. Where the influences on the SPS and the
transportation costs are discussed, the DOE/NASA silicon reference SPS (Reference 7) has
bean assumed. : ' : , '

1.1 PROSLEM STATEMENT

The earliest studies of large launch vehicles were conducted in the mid-1960's during the
development of Saturn V. With the initiation of shuttle development, such studies were
for a time dropped. As concept development for the solar power satellite began, there
~again developed an interest in large launch vehicles. Boeing daveloped a concept of a
500,000 lb. payload single stage-to-orbit ballistic vehicle in 1974, It used dual-fuecl
propulsion with oxygen-hydrocarbon and oxygen-hydrogen engines. A later study, funded
by NASA-JSC and MSFC, examined heavy lift launch vehicles and concluded that staged
ballistic configurations would have a cost advantage over single staged systems, At that
time SPS payloads were thought to have very low density, on the order of 20 kilograms per
cubic meter. Conscquently, the configurations of that time pericd employed very large
expendable shrouds. ' S ‘ '

Development of space fabrication concepts improved the payload density to about 73
kilograms per cubic meter and the launch vehicles were resized in response, 38C, in 1977,
developed a winged vehicie concept for horizontal land landing. A comparative
assessment of this versus the sea-landing ballistic systern showed that the land lander
would be operationally preferable and about equal to cast to the ballistic system, but that
the specific configuration had inadequate payload volume, It was subsequently reconfig-
ured to increase payload volume and became the reference system. The evolution
discussed -here is shown in Figure L1-1. : ‘

During all of this, the question of the "right" vehicle for 5P, especially the “right size,"
was never specifically raised,* - The'aims of the studies were to evaluate the performance
and cost potentials of large vehicles and to compare winged runway fanders with ballistic
sea landers. (Winged vehicles were sclected for their better operational characteristics,
i.e., shorter turnaround time.)

The reference SPS HLLV has an estimated payload capability of 420 metric tons and a
liftoff mass of 11,000 metric tons. It is between 3 and 4 times as massive as the Saturn V
moon rocket and nearly six times as massive as the Space Shuttle. Its large size and
development cost have become an SPS cost issue. Further, it is too large to be on an
evolutionary path from the Shuttle, (It does use the SSME in the second stage.) :

#*An early parametric study by Dan Gregory of Boeing illustrated that an economically
optimal sizc exists and suggested a range of 200 to 500 metric tons payvload for the
(then) SPS scenarios of 20,000 megawatts per year or more (the present DOE scenario is
10,000 megawatts per year), o
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The utility of smaller vehicles is an important question for the SPS evaluation studies now
nearing completion. Accordingly, this study evaluated a "small" HLLV. Issues examined
included performance, sizing, influence on SPS hardware packaging and construction
operations, commonality with Shuttle subsystems and nonrecurring and recurring cost.

1.2 SUBMARY OF CPTIONS

There Is, of course, no limit to the number of configurations and size options for launch

vehicles. Figure 1.2-1 illustrates some of the winged and ballistic evolutionary paths that
have been conceived. (The winged HLLV at the lower right is the reference vehicle). A

~ range of sizes, payload volume and mass capabilities, and degrees of reusability are

shown. This figure was originally prepared about two years ago to illustrate evolution
potentials. At that time little work had been done on SPS development approaches and
none of the alternatives were investigated in any depth. '

The reference orbit-to-orbit system is an electric orbit transfer vehicle of roughly 300
megawatts power, 4000 tons delivery transfer payload, using argon as propellant for its

_ion engines. Recently, issues have been raised as to (1) thermal effects on array
_ performance in low Earth orbit; (2) sensitivity of the system's cost and life to radiation

degradation of the array and degree of annealing possible; (3) possible environmental
effects arising from injection of argon ions into the Earth's magnetosphere. Accordingly,
it was deemed desirable to perform a sensitivity analysis on the reference EOTV and to
re-open the question of chemical (LO /LHZ) orbit transfer systems, especially options
that might be derived from Shuttle hardivare, : :
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2.1 SEZE AND CONFIGURATION SELECTION )

D180-25969-3.

2.0 SMALL HEAVY LIFT LAUNCH VEHICLE

The present day use of the term “heavy lift" connotes a launch system with a payload
capability substantially greater than the 30 tonnes of the Space Shuttle. A "smali" heavy-
lift system is a large vehicle; the term “small" is comparative to the very large SPS
reference system. R : o

A ‘pretiminary investigation was carried out to select the appropriate size range and adopt
a configuration approach. B - o
2.1.1 Poyload Yolume and Mass Considerations

Certain of the hardware items in the reference SPS system were sized to take advantage

- of the large (17-m diameter by 23-m length) paylead bay of the reference launch vehicle,

Principal items are the clectrical rotary joint (slip ring) and the crew habitats of the
orbital bases. Clearly, a smaller payload bay volume will impese penalties on these
elements of the system and requirc added construction laber in space. The realizeble
reduction of size of the launch vehicle without reduction of the large payload bay
envelope would be extremely limited. Accordingly, it was necessary to mazke a reasonable
judgment as to how much envelope reduction could be accommodated by SPS systems

‘withsut excessive penalties. The electrical slip ring cannot be made appreciably smaller, -
given the ecxisting requirements for curvents, rumber of busses, and voltages. It is,

however, & onc-per-SPS unit and on-orhit aszembly should not ke an inordinate penalty
with proper iom. A smalter crew hal | house fower crew per unit, but thore s
nothing spe about the [00eman reference capscity,  Smaller habitats will incur
operations! inconveniences but will prey

the necessity {prosently shown in the reference §P5 development scenario} to develop an

intermediate-sized habitat (larger than SCC but smaller than the ultimate article) for a
demanstration project. o . ’ , o

Based on those and similar considerations it was concludad that the limiting article is the

power trensmitter subarray. There arg maore than 7000 of thse units for each SPS, they
include most of the electronic complexity of the SPS (each subarray is fed by reference
phese and data fibar-ootic cables and by power supply cables), and they require high-
precisicn mechanical assembly. The subarrays are 10.4 meters square by about 30 cm
thick. Accordingly it was decided to employ a square-cross-section payload bay ‘11 meters
square, with some convenient length, A study of technology requirements for Earth-to-.

oF

 GEO transportation system (performed by Boeing for Langley Research Center) developed

configuration concepts for HLLV'S in the 200-tonne payload range, control confignred
without central vertical tails (Reference 8), The configurations were quite amenable to
aft-located,square-cross-saction payload bays. It was decided to adopt this desigh
approach. o : S o S a '

The payload bay length was selected on the basis of performance and scaling consigera-
tions and density indications from previous SPS payload packaging studies, The effects of
this smaller payload bay are discussed in detail in Section 2.3, : — ‘

2.1.2 Performance and Scaling Considerations
The prelirinary scaling analysis included consideration of the variation in structural

efficiency with stage size and propellant load. Simplified analyses of vehicle petformance
are often based on the assumption of constant propellant mass fraction. This is a very

Y panrecurring cost reductions and may avold
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poor assumption for this class of vehicle. A better scaling rule is that the inert mass has
a fixed and variable aspect. The variable part represents mass added as the propeliant

. ) load is increased. The fixed part is constant for a given vehicle diameter but varies with
diameter and other factors. ,

v For this analysis, prior results were examined to seiect the "L parameter (factor by which
N propellant load is multiplied to get variable inert mass); the "a" parameter was selected
- from the rough plot of a versus the square of diamecter shown in Figure 2,1-1. (it is

regarded as plausible that "a" is proportional to the square of diameter). :

‘Based on the SPS reference vehicle and the smaller vehicles designed by the study for
Langley, values of "a" were estimated as 140,000 kg and "b" as 0.08 for each stage. The
"a" value corresponds to a 12-meter tank diameter. The stage inert mass is given by:

Ml 23+ bMp'

where M_ is mainstage impulse propellant load., Second stage inert mass includes on-orbit
maneuvet propellant and booster inert mass includes post-separation and flyback
propellant. Other assumptions are given in Table 2.1-1, - '

Initial sizing was based on a fixed ideal delta v to injection of 9200 m/sec (30,183 ft/sec).

Given a fixed delta v, it is possible to rcpresem the payload ratio for a paral!el -burn
vehicle without crossfeed as: : '

iy _ z-ba(.fs«r") b It~ Q«(\/wiz l’)_{ c ‘-bf-”’**?ﬁ%*"> -0 _a [t - bt t)j

"""" P A Cat,=0) AL, - (%,.) F‘ P
where r is the ratio of orbiter to booster ‘thrust, U ,, and Y o are mass ratids of the
peraUel burn and orbiter alone burn respectively, Py i lS the booster prapellant load, and

1/c is the ratio of booster to orbiter ISP, -

. The Isp of the parallel burn is given by: -

- (l+ V)C\‘Cx_
Ca4Cy ¥

The mass ratios for each burn are computed from the Tsiolkovskii equation,
o (A

(In ST units the Isp is jet velocity in m/s. In Conventmnal units lsp in seconds  shouid be
multxplled by g in the Tsiolkovskil equation).

For a series burn system, the payload is given by

= ,21( 5([(- (*f’wﬂbz]} z C-(-0DbTp, a‘} _a,

Al =1
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These equations  were programmed on .. . minicornputer to plot payload and other
pertinent parameters versus staging velocity for a range of iotal mass values. Results for
series burn are shown in Figures 2,1-2 through 2.1-6. Tbz parallel burn comparison for

4000 tonnes lif toff mass is shown in Figures 2.1-7 through 2.1-9. . .

The optima are relatively flat, i.e., incensitive. This results from the inert mass model.
Use of a constant propeliant mass fraction (A') results in sharper optima. Cost optima
will be at higher staging velocities than mass optima because (1) LH, is more expensive
than hydrocarbon; (2) orbiters are more expensive than boosters. ;

In both instances, practical considerations require a staging velocity higher than the mass

optimum. In the series burn case, it is necessary to have about twice the propellant load
in the booster as the orbiter, or the booster becomes too short to arrive at a reasonable

. configuration (assurming booster tank diamecter equals orbiter tank diameter). In the

parallel burn case, the available thrust-to-mass ratio at staging forces a higher velocity.
In both cases the minimum practical values is about 2750 ni/s ideal, near 5000 ft/sec
relative.

The ratio of payload mass to liftoff mass improves with larger vehicles (as one would
expect). This is because the propellant fraction improves as propellant load is increased.
Figure 2.1-10 shows the decrease in Mi/M_ as liftoff mass is increased. Points from the
Langely study vehicles are also shown.” The latter assumed parallel burn with crossfeed
(from booster to orbiter) and would be expected to perform somewhat better than the
vehicles represented here. ' : -

Based on these results; a liftoff mass of 4000 tonnes was selected for a point dasign
study. The payload capability anticipted from these parametric analyses is 120 tonnes
(series burn) or 100 tonnes {parallel burn), -SPS packaging studies have indicated that the
payload bay density (lift capability/volume) should be in the range 75 kg/M~ to 100 kg/M -,
The forcing function is the relatively low density of transmitter subarrays; they average
much less than 75 kg/MJ but by mixing subarrays with high-density items, an average in
the range stated is obtained. At 120 tonnes lift capability, an }l-meter-square payload
bay cross-sectioh reguires a length of 13.2 m to reach 75 kg/mj. Anticipating the 120
tonnes estimate to be slightly conservative, a length of i4m was selected. Note that this
payload bay, aithough it has 5.6 times the volume of the shuttle payload bay, is actually
about 4 meters shorter. Accerdingly, a check was made to evaluate the propellant
capacity of an orbit transfer vechide constrained to these payload bay dimensions. Its
propellant capacity was limited to ahout 230 ionnes see Figure 2.3-2). This was deemed
adequate. {More volume-efficient QTV arrangements are possible).

The analysis conducted did not include beoster flyback renge as a parameter. For typical
boosters, flyback propeliant is 10% to 20% of inert muassy the variation of {lyback
propellant with staging conditions is a significam overall optimization parameters Since
staging velocity selection was downward Slimited to 2750 m/s {(ideal) by other factors,
reducing staging velocity to reduce f{lyback range is not a consideration.  Adjusting
staging angle conditions to reduce {lyback range remains an option. Flyback range may be
approxirnated by the following algorithm:

Orbit semimajor axis: - LA .

' a.= 2 - ry® B

where v is inertial velocity, ¢ is radius fron Earth's conter at staging, and Y is Earth's
geopotential.
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: - - o i,
r
Orbit eccentricity = e = {l -f (Za. \") E

d?(l-l-'thm“ﬂ)

where ¥ is inertial path angle. Our trajectory code gives only relative path angle, but
both relative and inertial velocities. I is less than 'JR by an amount

. I 2 ‘/--
ot = st X (ovgag s
X

where Vo is the velocity of Earth rotation, ¥2407 m/s at KSC. “\Vx Ve

| Flyback angle: o¢ =.2 (1'(,- @)' _
where &= cos™! {—’— [a‘_ (1-e ) ]
Flyback range = Yo O where Ty is radius of Earth

This algorithm is plotted parametrically in Figure 2.1-11. The downrange distance of the
staging point must be added to get total flyback range. Since range varies appreciably
with path angle, trajectory depression to reduce flyback range may be an important
consideration. This was to be investigated later by trajectory analyses. ‘

'2.1.3 Configuration Options and Selection

The configuration options examined included paraliel and series burns vehicles. By prior
agreement with JSC, the series burn vehicles did not consider crossfeed (supplying orbiter
engines from booster tanks during mated flight). The advantage and disadvantages of
crossfeed may be noted. :

Advama,ge

-0 - . Orbitér propellant-fraction-is improved since the orbiter tanks need not accommo-
date orbiter engine propellants consumed during mated flight. The ‘equivalent
tankage inert mass is carried by the booster, where its effect on payload is 1/4 o
1/6 that of orbiter inert mass. _

Disadvantages

(1)  Propellant flow to orbiter engines must be "handed off" from the booster to the
orbiter just prior to staging without interrupting orbiter engine operation; . -

Y(Z) The >ooster must be configuréd to contain three propeliants, i.e., 02, CHQ (or other
hydrocarbon) and H,. ‘

(3) At staging, large-diamcter propellant delivery lines between the booster and orbiter
must be disconnected safely; if these lines penetrate a heat shield, protective doors
must be closed. (This problem, of course, exists in separating the extcrnal tank
from the space shuttle orbiter). If both stages are reusable, there is a préblem of

_ protruding lines, presumably from the booster. If the lines cannot be retracted (this
would require large-diameter flex joints) it may be necessary to employ a jettison-
able line section. :
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Three configurations were examined: a series-burn option, and two parallel burn options,
belly-to-belly and back-to-back. These are shown in Figures 2.1-12 through 2.1-14. The
" series-burn design employs a flower-petal" nose of six triangular struts that support the
upper stage, each covered by a partial external fairing. After stage separation, the
flower petal elements are retracted by actuators to form a smoothly-faired nose. With
the petals open, flow paths exist to allow the second stage engine start sequence to be
initiated prior to separation. , : ‘ :

The belly-to-belly paralle! burn conﬁ'guration places the wings close togethér. 'This may

reduce transonic drag, but structural connections penetrate the heat shields of both
stages. The back-to-back option eliminates heat shield penetrations. - . :

-The series-burn option was selected for more detailed analysis. Rationale was as follows:

o The series-burn véhicle has slightly better performance - 120 tonnes compared to
-~ 100 tonnes; : T .‘ . - T

o  Stage separation is simpler; for parallel burn systems, the orbiter thrust after
booster cutoff tends to push the stages together rather than push them apart;

o Boost aerodynamics is simpler; the baoster wing is in the orbiter wing wake rather
than in an interfering location. : . : : , : ~

o  Ground handling is expected to be simpler.:
o The booster is more adaptable to use as a shuttle booster.

o Mated vehicle propulsion tests are not needed to qualify the boost phase propulsion
system, :

.0- ... Load paths and structural c}y,nanﬁcs are simpler.

The principal disadvantage of series burn is the higher boost thrust required -about -lSOOK,
per engine versus 1450K.

The series-burn stack height is commensurate with that of Saturn V, indicating that
present facilities can be used in the developmental phase. The operational, high-launch-
rate, ground handing system will probably move the empty vehicles on their own landing
gear, mate in the horizontal position at the launch pad, and use a strong-back tilt-up
launcher. . :

2.2 ¥EHICLE ANALYSIS

‘The following discussion presents results of analyses of the serics-burn vehicle.
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12.2.2 Reredynamics
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2.2.1 Trajectory Analyses and Vehicle Optimization

The vehicle launch trajectory employs zero-lift "gravity-turn' boost trajectory followed by
y

a roughly optimized second stage trajectory. Injection conditions are 90km altitude, due
east, with injection velocity appropriate to coast to 477km altitude.

Shortly after liftoff, the mated vehicle {(under booster thrust) executes a slight "tilt" away
from vertical flight, in the downrange direction. This initiates the “gravity turn,” The
amount of tilt sets the staging conditions. With a fixed amount of boost propellant, more
tilt (a) reduces staging altitude; (b) reduces staging path angle; (c) increases relative
velocity at staging. It is intuitively logical that there should be an optimal tilt; this is
indeed true. The objective is to maximize injected mass (the sum of second stage inert
mass and payload). Figure 2.2-1 shows variation in staging parameters and in injected
mass as a function of tilt angle. Figures 2.2-2 and 2.2-3 show the characteristics of a

preliminary reference trajectory with near-optimal characteristics. S )

Final selection of a reference trajectory requires evaluation of flyback range effects. For
any fiyback range, there will be an optimal booster wing area. Increasing wing area
increases the flyback cruise L/D, decreasing both installed thrust and flyback fuel. Since

~ increasing wing area reaches a point of diminishing returns, l.e., further increases in area

add little to L/D, whereas wing mass increases nearly linearly with area, it is apparent
that an optimal area must exist (for any given flybacl range). Since booster inerts affect =

payload {1 kg of bosster inerts is worth roughly 1/6 kg payload) there is a joint optimum

“among staging conditions and booster wing area.  These optimizations are ncarly

decoupled, however, because of the sharpness of the optimum of tilt (= staging
conditions). The flyback range at optimal staging conditions will be between 250 and- 300
km. Over this range the optimal wing area will change little, Consequently, our analysis
assumed these optima to be entirely decoupled. . :

¥

© A further parametric study was conducted to sclect the reference wing area. Wing area

was dictated by landing speed with a desire to maintain landing speed ay no more than 165
knots. The result was a selection of a reference wing area of 8200 f1° with a canard for
subsonic trim, as shown in Figure 2.2-4. ‘
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A hypersonié trim investigation, summarized in Figure 2.2-5, showed that the \-fehicl'e
could be trimmed between 30 and 40 degrees angle of attack with reasonable aileron
deflections. , : ' - - ,

The orbiter wing areav was also selected for landihg specd of 165 knots. Again, a canard
was used for subsonic trim to avoid large wing areas. The landing speed parametrics are
shown in Figure 2.2-6. : : ‘

" Table 2.2-1 summarize the results of the acrodynamics investigations.
As a result of the aerodynamics investigation, the vehicle wings were resized.

Hlustrated in Figure 2.2-7 are the revised wing area as compared to the original wing
areas, shown on the original configuration. Revised wing areas are shown as dotted lines.

2.2.3 Selected Configuration

The small HLLV final configuration is shown in Figure 2.2-8. The orbiter includes a
swept-back delta wing with a small subsonic foldout canard. The payload bay is aft of the
propellant tanks and is 1l metres square by 14 metres long. The orbiter uses six space
shuttle main engines with extended exit bells. Four of the six engines are gimbaled; the
center two are fixed. The upper stage also uses a small yaw ventral for head-end steering
to improve controllability inyaw. ' : : , R

The vehicles are control configured in yaw, thus eliminating the large vertical tail.
Elimination of the vertical tail assists in balancing the vehicle and makes practical an aft
pavicad bay on the orbiter. The booster empleys a “flower-petal" opening nose with a
truss structure as an interstage structure. This approach avoids expendible interstage
hardware and allows the second stage engine start sequence to be initiated during the first
stage tail-off as the open nose allows room for gas venting during the start sequence.
After stage separation, a simple hinged actuator mechanism closes the nose 1o a

streamlined, aerodynamic configuration.

“The booster employs sik oxygen-methanc engines of approximately 1833 K/lb thrusts,
Four high thrust air-breather engines are mounted on 10p of the wings for fly-back. The
air-breather engine inlets are closed by a blow-off cover until subsonic transition at which
time the engines undergo start sequence. Engine location was selected to avoid flow
attachment to either the wing or the body as a flow attachment will result in higher drag
during the fly-back. ' :

2.2.4 Mass Proportics

Table 2.2-2 presents the mass statement for the small HLLV, based on the final
configuration. The estimated payload based on the detailed mass statement is 126 metric
tons as compared to a parametric figure of 120 metric tons, )

2.2.5 HLLV Fleet Size Scenario

The SPS transportation and construction systemn interrelated transportation operations
scenario matcerial presvmed in the reference system description report from Phase I has
been incorporated into software so that trade studics can be run. Shown in Table 2.2-3 is
the HLLV fleet scenario for the smali HLLV. Note the increased nurnbers of fiigﬁts and
the increased production ratc. These scenario results provided the basics for cost
analyses. .

[
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Vehicle quantities were derived from the scenaric data in Table 2.2-3. The scenario

- analysis establishes the number of vehicles required for the initial fleet., Spares were

added to this. Engires and auxiliary propulsion were incependently estimated. Since the
engines follow a different learning curve than the airframes, it is necessary to discretely
estimate engine costs. The scenario results also determine the number of new vehicles
required for life cycle operations. An additional set of equivalent vehicles is required to
maintain spares and maintenance. Table 2.2-4 summarizes the results of this analysis.
The figures used were based on the same assumptions as used to cost the reference HLLV.
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-Table 2.2<¢. Vehicle Quantities -

INITIAL FLEFT & SPARFES

AIRFRAME
MAIN ENGINE
~AUX, PROPULSION

LIFE CYCLE

NEW VEHICLES
AIRFRAME |
MAIN ENGINE
AUX. PROPULSION

SPARES & MAINTEMANCE
ALRFRANE
MAIN ENGINE
" AUX. PROPULSION
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17
102
70
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174
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101

ORBITER

22

133
22

179
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2.3 THE EFFECTS OF A SMALL HLLV ON PAYLOAD PACKAGING, SPS
CONFIGURATION, GROUND AND SPACE FACILITIES, AND OPERATIONS

2.3.1 Small HLLV Packaging Parameters

The nominal small HLLV payload pararheters that were given are as follows:

‘Cargo Bay Envelope ' 1'1 @
R 1

Payload Mass .

’ | B 0m
Following the guidelines established in previous packaging analyses (Reference: Section 5
in Reference 9), we have discounted these parameters to allow for packaging and pallets.
The working parameters become the foilowing:

Max. envelqbe of components
: S 10%
Max. payload mass o 13%
(without packaging) 10%

’ ‘ 108mT

Table 2.3-1 lists the total payload that needs to be delivered to LEO for each year of the
SPS commercial pregram. This total payload includes components, spare parts, crew’
supplies and propellants used at both LEO and GEO. This table also lists the correspond-
ing number of mass-limited launches required per year and per day to deliver this payload.

2.3.2 Effects cn SPS Program Elements

The constraints identificd in the previous section were used to define the effects on the
various SPS program elements.  Table 2.3-2 lists thé program elements directly or
indirectly effected by having a smaller HLLV. The reader should refer to Reference 7 as
this table is examined.) Elements not identified in this table arc not affected. ‘

The interactions of these effects are more clezriy shewn in Figure 2.3-1. It is seen that
there are eight primary effccis. It should be evident frem this map that if any of the 8

‘primary &ffectss cah-be ‘alleviated, the -serondary cffects linked to them can-also be

eliminated. The possibiities for alleviating the primary eifects are discussed iIn
Table 2.3-3.

As a part of this analysis, the personnel OTV was reconfigured to fit the shorter payload
bay. The revised OTV concept is shown in Figures 2.3-2, 2.3-3 and 2.3-4.

2.3.2.1 Supporting Analyses

‘There were three supporting snaivses that were corducted to derive some of the data

shown in the preceding tables. These were a cargo packaging analysis, a GEQO Base
effects analysis, and alternative launch and recovery site concepts analysis. ‘ :

2.3.2.1.1 Cargo Fackaging Analysis

The primary objective of the cargo packaging enalvsis was to determine the configura-
tions of the primary payloads for the smail HLLV. .-

of this study were used as the reference

The cargo packaging daia geveloped in
(sec Table 5-1 in Seciudn 5.0 w in Reference 9). These data. were
. (;‘n;_ .
el o,
Op
<o TP 0
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- TABLE 2.3-] ,
THEORETICAL QUANTITY OF MASS-LIMITED LAUNCHES

THEORETICAL - 'NO. OF l>

sps ~ TOTAL “TOTAL NO. OF - _ LAUNCHES
PROGRAM PAYLOAD LAUNCHES PER PER
YR S > (wass-Linmeny 2> DAY  WEEK
1 15059 140 38 2,66
2 17048 158 | .43 3.01
3 47095 o w7 1.20 8.4
4 107633 _ 997 ‘ 273 e
5 138549 | 1283 s 24,64
6 137065 . 1270 3.48 24,36
7 138990 | 1287 - s 485
8 o104 Y A W T 24,85
9 lwiest - 3pp | 3.5 25.13
10 155249 43 3.9 - 27.58
11 156457 B UTT I ~ .97 - 27,79
12 158804 | 1471 4.03 . 28.21
13 148352 13 | .76 26.32
23 162564 1506 o 4.12 . 28.84
33 B 179013 1658 L I

[T Reterence: D180-25461-2, Table 1.3-16 (p. 216)

[~ Based on 108 MT net payload per launch (120 MT payload capability
discounted 10% to allow for packaging) '

' b— Based on 7 day per week Jaunch schedule
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Interrclationships of the Effects of a Small HLLV
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examined to find the components ‘that 1) would be affected by the smalier cargo bay
envelope, and 2) those that are either the most numerous, the most massive, and/or the
largest (the so-called "primary payloads"). These components are identified in Figure
2.3-5. B ' ' :

- When comparing the small HLLV "pi‘imary péy]oads" identified in Figure 2;3-5 against the
8 g 8

"primary payloads" identified in Figure 5-5 of the Reference, it will be noted that the
Antenna Secondary Structure and the Propellant Pallets have not been included in
Figure 2.3-5. ' :

The -Secondary Structure package has changed for the baseline system (since the
Reference was published) to a fabricated structure instead of a deployable structure. The
material for this fabricated structure will be beam machine rol! stock and has, therefore,
been included into the combined beam machine feed stock shown in Figure 2.3-5, ’

Tﬁe POTV, SPS, and EOTV Propellant Pallets have been deleted as it is assumed that
there will have to be dedicated HLLYV tankers, S S

The only cofn’ponents that are repackaged significantly are the solar array b'lanket‘s, thé
ion thruster panels, and the electrical rotary joint (slip ring) assembly. '
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2.8.2.1.2 GEO BASE IMPACTS FROM SMALLER HLLV

" Smaller payload capability of the HLLV reduces the allowable cargo size and mass
that can be delfvered into low earth orbit, At the GEO construction base, however, the
reduction in HLLV payload size will be important. The 11m x 11m X 14m cargo bay

-limitation lead to alternate SPS construction requirements, which fmpact GEO hase

systems as shown in Fig. 2.3-6, When more construction tasks are added, extra cquip-
ment and/or work areas :ue needed. The smaller cargo bay also limits the size and hence
the number of required pressure vessels for habitation and work support functions, A
greater number of small cargo containers must be handled and distributed through the intra
base logistic network., All of the above leads to a larter crew, additional housing, morec
base support structure, ete, - .

I‘igure 2.3-7 shows the Phase 2 reference constructxon hase and the alter nate base
which relics on the smaller HLLV. The alternate base, which uses smaller crew modules,
is 14% heavier and requires a larger crew to maintain the reference production rate, -
Although the altcrnate GEO base has a higher unit cost, it also shares a lower development
cost with the LEO base crew module. The smaller crew module provides a significant
reduction in DDT&E expenditures at the outsct of the investment phase. As a result, the
initial investment costs (DDT&E & unit) will only be 50% greater than the refercnce base.
The full deployment cosL of the crew module could also be deleted from the investment
phase if the smaller module was developed for common use by the preceeding SPS demon-
stration phase, The following paragraphs chscuss the major effect of the smaller HLLV
on GEO base opemhons and related crew support facdihes.

GEO Base Oper ations Impact - The smaller HLLV cargo bay (11 m x 11m x 14 m) af-.

' fects GEO base operations for satelhte eonstruction and intra base logistics. In par-

ticular;, increased constructxon zequlrements lead to additional equipment and crew
staffing for the intra base logistics system as well as for construction.

Revised satellite construction requircments include smaller solar arr ay bldnket

cannisters (7.5 m vs 15 m), modifications to solar blanket interfaces (e. £., support
structure, acqulsxtlon buses, ete), and modular versus preassembled slip rings.

Those operations, which impose added equipments for the GEO base, are listed in Fig.
2.3-8 with their system impacts (i. e., delta mas: 14 cost), To maintain the six month
reference construction schedulc twice as many cherry pickers axe needed to instal}
88 versus 44 solar arr ay bhml ets in each bay of the energy conversxon system. No
addmonal equipment is needed to handle the other subsystems which mtert‘ace with

the smaller solar ar ray blankets, However, the Level 1 subasscembly factory must: be
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o SMALLER HLLV PAYLOAD CAPABILITY
— 11 X 11 X 14 m VS 17 m DIA X 23 m CARGO BAY
— 120 MT VS 400 MT

o ALTERNATE SPS CONSTRUCTION REQUIREMENTS
— 7.5m VS 15 m SOLAR ARRAY BLANKETS
- MODULAR VS ASSEMBLED SLIP RING DELIVERY

© GEO BASE SYSTEMS IMPACT
— ADDED EQUIPMENT/WORK AREAS
— SMALLER HABITATS & WORK MODULES
— MORE INTRA-BASE LOGISTICS
~ LARGER WORK FORCE

— ADDITIONAL BASE STRUCTURE
0847-001W

- Fig. 2.3-6 Smaller HLLV Payload Effects on GEO
’ Construction Base

BASELIRE

BASELINE WITH
SREALLER HLLV

e SPS PRODUCTION RATE ) 10 GW/YR

e CREW MODULE DEVEL COST, 19798 $ 5.168
BASE UNIT COST $ 9.018

e BASE ANNUAL COST $ 1.30B/YR

e BASE MASS 6656 MT

& GEO CONSTRUCTION CREW 444

0847-002W

10 GW/YR
$ 3.788
$15.178

1.46B/YR
7707 MT
500

Fig. 2.3-7 Alternate SPS Construction Bases
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expanded to accommodate the‘equipment needed to support the assembly and checkout
of the modularized slip ring. Finally, it-is estimated.that four times as many cargo
pallets must be docked /unloaded and handled.

GEO base crew operations are also increased to support the added tasks for sat-
ellite construction and intra base logistics. It is estimated that 56 crewmen will be

- needed to cover the extra workload and furnish the required habitat and crew support

services. Figure 2.3-9 shows a breakdown of theses added crew operations, together
with the extra cost for annual operations. :

Crew Support Facilities Impact - The reduced size cargo béy of the small HLLV results

in a smaller pressurized module to support habitation and work-related activities.
This module is now-10.5 m dia. x 13.5 m instead of the 17 m dia. x 23 m long module '
that the reference HLLV can transport. Figure 2.3-10 considers the number of small

modules necessary to replace one large module.

In the Phase 2 anzﬂyéis of crew habitation rcquirémcnts, it was judged that one

large module, sized for the reference HLLV could comfortably house 100 men. On a

direct volume basis, five of the smaller modules would provide approximately the same
volume as one larger module. (In fact, the equivalent volume ratio is probably greater
than 5 to 1, since packaging given items into a smaller volume is less efficient than

packaging the same items into a larger volume. This holds for all erew support facil-

ities where the initial allocation of functional areas is either believed to be correct or

is perhaps not well defined.) The GEO base work modules for command and cbntrol,

base maintenance, etec have yet to be analyzed. When the functional requirements

for these ac‘uwtes are developed the area neceded for crew and eqmpment could either
mect or exceod ‘the current assumptlonq Hence the 5 to 1 ratio is used to establish
equivalent work modules for the smaller HLLV. Crew habitation requirements, how-
ever, were cxamined in Phase 2 to the level of compartmental partitioning of major
crew areas, considering furnishings and cquipment. The larger crew mostle pro-
vided about 17,44 n13 of free volume for cach crewman, This is about 2.5 times
Celentano's recommended free volume per man (7.08 m3) for acceptable crew perfor-
mance over 90 days. Therefore, a Lrief study was performed to take another look at

the crew accommodation packaging arrangements for the smaller crew module. By

-reducing the free volume crew allocation to 10.35 m3, we judge that 100 men can be

adequately housed in three of the smaller modules.
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GEO BASE SYSTEM

IMPACT

REVISED OPER;\TIONS ADDED EQUIPMENT AMASS | A COST
o INSTALL 88- 7.5 m SOLAR ARRAY .
BLANKETS/BAY (TWICE BASELINE) {4) 30 m CHERRY PICKERS 10MT | $ 87.6M
@ LEVEL H ANCHORS
e ASSEMBLE & C/0 MODULAR SLIP (2) 30m CHERRY bICKERS, 15MT | $ 97.6M
RING : RACKS & TOOLS,
TEST & C/0 EQUIP.
‘ @ LEVEL J FACTORY
o DOCK/UNLOAD & HANDLE MORE (2} c.\RGO TUG DOCKING 22MT | § 78.8M
NUMEROUS SMALL CARGO PALLETS PURTS
(FOUR TIMES BASELINE) {2) CARGO PALLET
. HANDLING JIG
. {80) TRANSPORTERS (SMALL)
0847-003W @LEVELJ
' 47T | $264M

" Fig. 2.3-8 GEO Con'strucﬁan Qperations -lmpact Due to Smalter HLLV

BASELINE GEO CONSTRUCTION CREW

ADDED CREW OPERATIONS

— SOLAR'ARRAY INSTALLATION ’ 8
— SLIP RING ASSEMBLY & C/O 8
— CARGO HANDLING & DISTRIBUTION 12
—~ HABITAT & CREW SUPPORT 28

{UTILITIES, HOTEL, FOOD MGT,

MAINT, ETC)

® OPERATIONS COST IMPACT

— ADDED CREW SALARIES

ADJUSTED BASE CREW

— ADDED CREW SUPPLIES ($1.43V/MANYR)

0847-004W

CREWNMEN
444

56

500

$83.3M
$60.1

$163.4M

Fig. 2.3-9 Effect of Smaller HLLV

58

P RS




TR ey v s ey

D180-25969-5
* REFERENCE HLLY SMALLER* HLLY
———ZRENCE HLLY ——ERTHLLY
—
——
® MODULE SI2¢ 17mDIAX 23 m 10.5m DIA X 135 m
® FREE VOL/MAN® 17.44m3 1744 m3
® . MODULES/100 MeN 1 -
® FREE VOL/MAN® R - © 1035m3
® MODULES/100 MEN ~ 3
CELENTANO PERFORMANCE": 90 DAYS - 7.03 m3/MAN FREE voL,
*FREE VOL ASSUMED T0 BE 50% OF TOTAL VOLUME
0847.005w .

- Fig. 2.2.70 Impact of HLLY Siza on GEO Base Moduley

[ Egﬁ E E' CREW QUARTERS
o O ' ' ,//_Q\ * STATEROOMS
. L ® MEDICAL '
v * LIBRARY
o men =V
i -

———
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.

+
SERVICES

I SERVICES /::—/————-’—‘>
¢
‘.\\\
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’ w y .

EVA Prepy PR

_ Pl
@é@%&?: S

: S Cﬁ;’/ ® STORM SHELTER. |
0847~006W V \ch\.’)_/ B 1

—
Fig. 2.3.11 Crew Module Size for “Smatler’ HLLV Launch — Three
Medules House 109 Mean -

® RECREATION
© FITNESS
° SERVICES -
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Revised layouts for these smuiler habitation modules are shown in I‘xgure 2.3- 11 :
Allowing for wall thickness, insulation and radmnon protectlon the inside diameter of
each deck is 10 m and floor to ceiling height is 2.15 m, One module provxdes quaters
for 60 men and eéch of the four decks has the same layout of 16 comparably sized

quaters; except that on two of the decks, two quarters are eliminated on each to pro-

~vide hygiene and waste nianagement. The second module has one deck of 14 qﬁarterls

plus toilets, laid out as the first module, then two decks with 12 larger quarters each.
A fourth deck provides mecical facilities, a library and two staterooms for the two
most senior officers. The third module provides services on two of the four decks.
One deck provides a gymnasium, a recreation lounge, a thirty seat theatre for movies,
church services and meétings‘ a laundry and a hygiene/waste managerﬁcnt facility.
The other service deck has the gﬁlley, food storage for emergencies and eating accom-

~ modation for 28, Main food stroage is in an attached logistics module. This deck also

serves as the storm shelter with suitable distribution of equipments and wall thicknesses
to provide protection. The free area available for 100 men during solar storm events
is 0.54m2 (5.8 ft ) per man. The remaining two decks in this module house subs_y stems

- and EVA preparation,

Comparison of the smaller module to the larger baseline module, Fig. 2.3-12 shows,

. as alternates, the estimated total number of GEO base crew support facilities. ~Mass .

and cost data are shown for each module and the estimated penalty’is identified for
the smaller module. The number of crew habitats and related work modules are de-
fined for support of GEO construction and SPS maintenance. When the appropriate

small module to buseline module ratio is applied (i.e., 3:1 habitats and 5:1 work), 33

- small modules (10.5 m dia) are required for initial GEO construction (vs 8 at 17 m dia).

Later in the program when 60 satellites have to be maintained, 99 of the smaller mod-—

ules will bé needed for hdbltﬂtlon and work support functions.

Figure 2.3-13 shows 2 comparative breakdown of the major elements covered'by
the estimates for crew module mass and average unit cost. The smaller module retains
the reference cabin wall design for protection against trapped electron flux. A cne
deck storm shelter is also provided, as in the reference, for environmental protection
against solar flares. Environmental control subsystem weights are based on 60 men,
as defined in Fig. 2.3~-11. Weight estimates for the other subsystems of the smali -
module (i.e., communications, electrical power and crew accommodations) are also

-adjusted for the 60 man crew. As shown in Fig. 2.3-13, the latter subsystems
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Fig. 2.3-13 Crew Module Comparison - Mass & Cost oo
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represent less than 25% of the réfei'ence module mass but almost half of the smaller
module mass. From a cost point of view, the latter subsystems account for more than
‘half the cost of either module. This is because these subsystems contain basic com-
ponents (fixed costs) which are insensitive to changes in crew size or module geom-
etry. Lower crew module costs are possible, of course, if the smaller modules were
defined differently and compared in terms of their respective functions and capabili-
ties. It should be noted that the cost 'penalty attributed to the smaller pressure
vessel in Fig. 2.3-12 is probably too high since these cost data do not include the

full benefit of production quantity learning.

The large number of crew modules resulting from the smaller HLLV raises the
question as to how they might be acconmodated on ‘the base. The center of GEO base
logistic activities occurs at the top deck, Level J, which includes the crew quarters/

operations center and areas for growth. For example, at the end of the 30 year réf—
erence scenario, the crew quarters/operations complex could grow to 99 modules.
Figure 2.3-14 shows that Level J has ample area to mount as many small modules as
needed. ‘

Net Impact of Smaller HLLV on GEO Ba:’e - The net impact of the smaller HLLV on g

GEO base mass and cost is summarized in Fig. 2.3-15. The reference work facilities -

must be revised primarily to support the added crew support facilities, accommodate
extra construction equipment, enlarge cargo handling /distribution, and ekpand the
subassembly factory. One benefit of the smaller crew module is that it provides a
significant reduction in DDT&E expenditures which occur at the outset of the invest-
ment phase. It also provides a programmatic option that would make one crew module
" size serve needs for both the demonstration und investment phases of the pr: ogram.

In that event, only one module would be devoloped .m(' funded to meet carlier dem—
onstration phasc objectives. This option would then avoid $3.8B (with wraparound

_factors) for developing another small crew module for the investment phase.

It should be noted again that the crew module px‘oduction costs are probably
too low smce they exclude the full benefits of high production learning. In addition,
the range of crew modulcs costs cover an expenditure over 30 years with no dxs- :

counting included.
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-2.3.2.1.3 Alternative Launch and Recovery Site Concepts

In the analysis of the effects of a small HLLV on the SPS program elements, it was found
that one of the most significant effects would be on the launch and recovery site. This
analysis was prepared to amplify the basis of this assessment and to show some
alternative solutions. . : -

" Calculation of the Numter of Launch Pads—In Table 2;3-1, it was shown that at year 12

{when 20 SPS's are in oruit, per year) that 1471 mass-limited flights would be required.
Muitiply this by 1.05 to account for non-optimal packaging and we get 1545 flights per
year. The pad time per vehicle is 34 hours. This leads to the capability of each pad to
support 257 flights per year (assuming 24 hours per day/365 days per year operations).

© This results in a requirement for 6 launch pads for the small HLLV, o

Launch Pad Locations—If we assume that it will be environmentally acceptable to launch
up.to 5 vehicles per day every day of the week at KSC, then we are given the requirement
to find space for 6 HLLV launch pads. In Task 4210111, we found that for the small HLLV
that the minimum pad separation distance required is 8000 ft. ‘

 We examined 2 possible arrangements of 6 HLLV launch pads at KSC that meet the -

8000 ft separation requirement. Figure 2.3-16 shows an off-shore arrangement similar to
the baseline concept for the large HLLV. Figure 2.3-17 shows an arrangement where the

"6 pads are located on-shore. In this arrangement, 3 of the HLLV pads will be at the 38C,

39D, and 39E pad locations (shown to be in locations previously reserved for them). The 3.
additional HLLV pads are shown to be located at the 37, 40, and 41 pad locations. (It is
assumed that the current user of these pads will no longer be operational or that they can
be moved to other pad locations. In addition, pads 34, 20, and 19 will have to be
demolished to provide the 8000 ft clearance). : o

Cost Analysis Highlights—The cost estimates for the alternative launch and recovery sites
are summarized in Table 2.3-4. The 5 alternative concepts are described below: '

o' Large HLLV—Reférence - e ‘ : - :
o “This is the reference concept for the large HLLV, described in the Reference
System Description, WBS 1.3.7. '

o Large HLLV-Piers : ‘
o. This concept substitutes a 200 ft wide steel pier system in lieu of the rock.
causeways. Brown and Root estirnates this stecl pier arrangement to cost
$50,G00 per lineal foot. o

o Small HLLV Causeways

o This arrangement of this concept is shown in Figure 2.3-16.

o The causeways are 100 ft wide and 50 ft high.

o The launch pads are scaled to be 35% as large and expensive as that required
for the large HLLV. ' -

o - The HLLV Orbit:r and Booster processing facilitics were scaled down to the

smaller vehicle sizes and additional bays were provided as required. - Scaling
down the vertical ciearance height and the strength required resulted .in
substantial cost savings. e
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Figu_re 2.3-16. SPS Launch and Recovery Site Arrangement at KSC Configured for a Smatt HLLV
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Figure 2.3.;17. On-Shore Arrangement of SPS Launch and Recovery Site Facilities
at KSC Configured for a Stmall HLLV
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o Small HLLV Piers ' -
o This arrangement for this concept was identical to that described above.
0 The only difference is that 100 ft wide steel piers are used in lieu of the rock
causeways. Brown and Root estimated the cost to be 542,000 per lineal foot.

Small HLLV On-Shore . , :

o The arrangement for this concept was shown in Figure 2.3-17.

o The ship and barge basin were eliminated.

o The scaled-down orbiter and booster processing facilities were also used here.
o] The cost of the new causeway was included. .

©

RECOMMENDATIONS—It is obvious that the so-called "on-shore" pad arrangement is
substantially cheaper than the "off-shore" alternatives. These cost estimates were fairly
crude, so it is suggested that a task be provided in future studies to derive more detailed
cost data. :

The environmental effects of a 24 hour pér day, 7 day per week launch schedule cannot be
ignored. A more detailed study is required to define the maximum launch rate that could

~ be tolerated at KSC. :

2.3.3 Conclusions

The mass and cost deltas associated with each.of the 8 primary effect chains are
summarized in Table 2.3-5. It is evident that the smaller crew modules are the
dominating effect. : - S S
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2.6 ESTIMATE OF DELTA ENVIRONMENTAL EFFECTS
2.4.1 Introduction ' ' |

The objective of this task was to assess the environmental effects of the smaller and more
numerous HLLV. These environmental effects include launch and reentry overpressure
(sonic boom), launch facility noise, launch pad explosions, and effluent deposition in the
upper atmosphere. ' ‘ ' :

_ These environmental effects have been assessed for the baseline HLLV. The sonic boom,

launch site noise, and launch pad explosion effects were reported in Reference 1. The
effluent deposition effects were reported in Reference 2. The authors of these analyses

- (References 3, 4, 5 and 6) were asked to make judgments as to the delta environmental

effects when comparing the smaller HLLV to the baseline HLLV. This report presents the
results of these assessments. '

2.4.2 Launch and Entry Overpressure

The sonic boom characteristics for the small HLLV duri.ng reentry are described below.

. The ascent sonic boom characteristics were not assessed as the ascent trajectory for the

small HLLV is substantially different than that for the large HLLV. As the ascent sonic
booms will occur over the ocean down-range from the launch site, it was judged that the
ascent sonic overpressure characteristics do not need to be recomputed.

Sonic Overpressure Calculation—In Reference |, the sonic ovérpressure of the SPS véhi-

*\ b ¥ L

cles were computed using "the modified Witham equation" shown below:
: P,P : o
o _ 2 (y1/8 d _ ~ :
P VA5 (kg) ™M%D ( ) K, |

. Bow shock overpressure in psf
Atmosphere pressure at vehicle altitude in psf
Atmosphere pressure at ground level in psf
Perpendicular distance from flight path in feet
Reflection factor (usually about 2.0)
Vehicle Mach number
. Vehicle diameter
Vehicle length :
Vehicle volume shape factor (.5¢SKv£.87) ; assumed to be
0.8

where AP

> TT
0>
i u“n Hetowonofon

Rea = X
C TR

<

For our purposes in the analysis of the small HLLV, the only fac,}or that will be different
from those used for the large winged HLLV analysis is the d/I” factor. It was judged
(Reference 3) that the under flight track overpressures for the small HLLV could be
scaled from the large HLLV data. : ‘ '

(/2% small HLLV , .
(d/Q1/%) Large HLLV .

(12.5/112.71/%) 3.836

5 asa2siise73t/yc i

Scale {actor

u27

" .8665 (use .87)

Sonic Overpressure Patterns—The overpressure along the vehicle flight track predicted by
the modified Witham ecquation is shown in Figtre 2.4-1. These overpressures were used
together with the data from program TEA-251 to determine sonic boom overpressure
patterns lateral to the ground track, sce Figures 2.4-2 and 2.4-3,
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Figure 2.4-1. Ground Sonic Boom Overpressures Under Flight Track—Small HLLV Reentry
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Figure 2.4-2. Small HLLV Booster Reentry Sonic Boom Overpressure
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The reentry sonic boom pressure signatures (AP vs time) at selected locations are not
scalable (Reference 3). : : :

Effects of the Sonic Overpressures—In Reference 1, the physical and behavioral effects on
humans of sonic overpressures and the structural damage effects of sonic booms were
enumerated. From this data, it was recommended that the maximum allowable
overpressure of 2.0 psf outside of the government reservation perimeter shall not be
exceeded. , :

What this translates to for the small HLLV is that the perimeter of the government
reservation must be at least 25nm from the landing site on the line of approach (based on
Figure 2.4-2) and at least 13nm downrange (based on Figure 2.4-3). The corresponding
exclusion ranges for the large HLLV's were 27nm and 17nm respectively.

2.4.3 Launch Noise

Launch Noise Calculation—In Reference 1, the launch noise was predicted by a procedure
that utilizes the basic jet noise generation influencing parameters (jet velocity, density,
mass flow, temperature and nozzle area). The small HLLV uses 6/16 of the number of the
same engines that were used in the original analysis. The scaling factor is 10 log 6/16 =
-4.26 db. For convenience, it was recommended (Reference 4) that -5 db be used (the
predictions are only accurate to 0.5 db) to adjust the data plots found in Reference 1.

Launch Noise Data—The predicted launch Overall Sound Pressure Level (OASPL) contour
map for the small HLLV is shown in Figure 2.4-4. The predicted Perceived Noise Level
(PNL) contour is shown ir Tigure 2.4-5. These contour maps represent the maximum noise -
“emitted by the launch veaicle at the site. These noise predictions are limited to the
static case where the vehicle is considered to have no forward motion. . :

As a measure of relative comparison, the building damage noise limit (as suggested on the
basis of a literature survey) of 147 db OASPL is prescribed. For habitation, the PNL.
levels should not exceed 108 db. :

Figure 2.4-6 shows the OASPL and PNL levels for the small HLLV as a function of radial
distance along the ground surface ( = 90%). From extrapolation of this curve, it can be
.seen that the maximum.QASPL level for building damage occurs at about 400 ft (for the.
large HLLV, the corresponding location was 1000 ft). The PNL limit of 108 db takes place
at 21,000 ft (for the large HLLV, the corresponding location was at 32,000 f1). o

Figures 2.4-7 through 2.4-9 present the polar plot of the predicted OASPL for. 1000,
10,000, and 100,000 ft distances.. The PNL predictions for the same distances are shown
in Figures 2.4-10 through 2.4-12. Figures 2.4-13 to 2.4-15 show the sound spectrum along
the ground plane for the above distances. ‘ : :

2.4.4 Explosive Hazard Due To The Propellant Combinations

The explosive hazard of the propellant combinations used in the small HLLV was
estimated using the procedures used for the large HLLV, see Reference 1. To adjust the
data from this reference it was necessary to define the scaling factor shown below
(Reference 6): : ’ ‘

Smal! HLLV 6 -

Booster: L02 + LCHa = 4.823x10°1b x .2 = 964,600 1b of TNT equivalent

Second Stage: L02 +LH, = 2.491x10%1b x .6 = 1,494,600 1b. of TNT equivalent '
: 2,4659x10% Ib. of TNT equivalent
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; . 3.[ 6 :
Scaling _ Vz.1459x 107 _
Factor = 30g.200x106 - 9737

Large HLLV
TNT equivalent

The predicted overpre,ssufcs from an on-pad explosion of the small HLLV are shown in
. Figure 2.4-16. Using the same 0.75 psi overpressure limitation as was used for the large

HLLV, the minimuin pad separation distance for the small HLLV becomes 1.32nm
(8000 ft). The corresponcing pad separation distance for the large HLLV was 2nm
(12,156 11). T :

2.4.5 Effluent Deposition in the Upper Atmosphere

In Reference 2, the deposition of H. and H.O into the upper atmosphere by the large
HLLV's was assessed. The corresponding ei?fects for the smaller HLLV was estimated
from this data (Reference 5). .

For the large HLLV, there were approximately 8 flights per week. For the smaller HLLYV,
there will be 35 flights per week (for the corresponding year of SPS construction). There
will, therefore, be 35/8 = 4.38 times as many flights per week.

The second stage propell.ant mass for th6e large HLLV ‘was 5.1x10® kg. For the small
HLLV, the corresponding mass is 1.13x10 kg. Therefore, each of the small HLLV's will
inject 51% as much of the effluer)t as the large HLLV, o ‘

The net effect will be 1.73 times as much effluent injected into the uppér atmosphere

each week by the small HLLV when compared to the large HLLV. However, this may not
be as bad as it may seem. R :

The density of effluents for each of the smaller HLLV's will be approximately half of that
for the larger HLLV's. Furthermore, these cf{luents will be spread along a smaller
diameter line source for each vehicle flight. The speed of diffusion will, therefore, be
decreased due to the rmore rapidly decreasing concentration gradients. This will allow
more time for favorable chemical reactions to occur before the effluents diffuse to the

‘lonosphere.

. - As with -the -previous -analysis {in-Reference 2), the provision must be mad'e‘tﬁa't these

predictions are very preliminary in nature in that some very important simplifying
assumptions have been made to allow the analysis to be done. More detailed analyses

should be done as there may be some subtle effects that may either harm or help the
effluent problem. - : .

2.4.6 Summary

In this report, we have presented the results of a comparative assessment of the
environmental effects of the small HLLV versus those of the bascline large HLLV.,

The series-burn stack height is commensurate with that of Saturn V, indicating that
present facilities can be used in the developmental phase. The operational, high-launch-
rate, ground handing system will probably move the empty vehicles on th ir own landing
gear, mate in the horizontal position at the launch pad, and use a strong-back tilt-up
launcher.
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®  Sceled From Fig 4.1-1 : Ret. 1
®  Scate Fecior © 237

Overpressure, P51

5000 10000 16000 20000 . 25000
. Dutence From Exploson, Ft

Figure 2.4-16. Predicted Overpressures from On-Pad
Explosion (Smalt HLL V) ,
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Sonic Boom—The second stage vehicle reentry will be the source of the most severe sonic
booms at the launch and recovery site. The recommended sonic boom overpressure at the
boundary of the government reservation is 2.0 psf. Figure 2.4-17 shows that this 2.0 psf
boundary for the small HLLV is somewhat less than that required for the large HLLV.

Launch Noise and Blast—The launch noise levels for the small HLLV will be substantially
less than that for the large HLLV. Figure 2.4-18 shows that adjacent structures can be
60% closer to the small HLLV launch pads when noise level structural damage is
considered. Figure 2.4-19 shows the minimum pad separation required based on an on-pad
explosion. The pads can be over 4000 ft closer together than was required for the large
HLLV. This figure also shows that the minimum distance to habitable areas can be 12000
ft closer, based on human noise exposure limitations. :

Upper Atmosphere Effluents—The small HLLV will -deposit 1.7! times as much effluent
into the atmosphere per week as the large HLLV.. However, this increase may be
substantially offset by a slower rate of diffusion that will allow the effluents to be
chemically decomposed into non-harmful constituents. ' :

$$$3270
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Figure 2.4-17. Minimum Distance from a Launch Pad to Adjacent-Structures
Based on Noise Level Criteria

83




" .

)
%

S opnm e e L,

D180-25969-5

f o 221 ’

) Lorge HLLYV
—— Adjeomnt
—~ Structures
/ © 147 ¢3 CRITERIA

- . - FOR STRUCTURAL
. A DAMAGE DUE
Smalt ‘ TO LAUNCH

. MLy VEMICLE NOISE

Adjacent N

\

AN
N

Noise Level Criteria

$£3-3213

Stru

ctutes

" ® . P
200 400 800 800

L

~—

T OSMALLHLLY
ADJACENT

RABITATION >

o

\

U U
1000 1200 FT

/

\/ua

. -Figure 2.4-18. Minimum Distance from Launch Pad to Adjacent Structures Based on

Qe HLLY

ADJACENT

3

ITATION [~

DI ’ B AN —— . LARGE MLLV
: o SMALL HLLY LAUNCH PAD
/ LAUNCH PAD \smm\nm
N SEPAHATION
oisTance > =
! % 8 0% 3, 03¢t

q 2 bl
LAUNCH
P40

d

/

/

e

(== 10808 crITERIA
FOR HUMAN NOIGE
TOLERANCE

= 0.98 51 sasT
OVERPRESSURE
FOR STRUCTURAL
TOLERANCE

_

Figure 2.4-19. Minimum Distance from Launch Pad to Adjacent Habitable Areas
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2.5 COST ANALYSIS

It was estimated that the small HLLV would inher1t several subsystems and technologies
that could be used with suitable modifications. The principal ones are the following:

FROM SHUTTLE

ORBITER MAIN ENGINES

(o]

o THERMAL PROTECTION SYSTEM

o AVIONICS & POWER o

‘o - CREW SYSTEMS i

(4] REACTION CONTROL SYSTEM
FROM OTV |

o ORBIT MANEUVER ENGINES
FROM MILITARY OR COMMERCIAL AIRCRAFT

o BOOSTER FLYBACK ENGINES

Cost estimating factors are summarized in Table 2.5-1. The top part of the table
indicates the DDT&E costs. The center part shows the commonality credits from the
shuttle and OTV, and the bottom summarizes the theoretical first unit costs and learning
slopes for vehicle production. - .

The development costs figures from the Table 2.5-1 are shown in pie chart fashion in
Figure 2.5-1. Note that totals are also indicated. The relatively small main engine
contribution for the orbiter results from the assumption that the space shuttle main
engine is to be used essentially as is. : -

The principal contributors tb cost per {light are enumerated in Table 2.5-2.

The scenario indicated a nominal launch rate of 1500 flights per year. The program
average cost per flight is shown in pie chart fashion in Figure 2.5-2. As was true for the
reference HLLYV, flight hardware for amortization of vehicles and spares and maintenance
dominates the total. Ground system and operations include those people directly involved
in vehicle turnaround operations.. Site manpower and pragram support are indirect-people
chargeable to launch operations. Tooling sustaining reflects a 10% a year figure based on
initial tooling costs. Finally, propellants were costed as they were costed for the
reference HLLV. ‘ ’

The delta costs between the small HLLV and the large reference system are summarized
in Table 2.5-3 page. Satellite design changes resulted in increased costs for the space
construction systems that were reflected as nonrecurring invesment costs in hardware."
The necessity to use smaller crew modules results in a DDT&E savings, but an investment
increase from the need to buy more of the smaller modules. Transportation includes
direct DDT&E savings on the smaller launch vehicle, savings resulting from less complex
facilities and increase in the fleet investment and in the HLLV factory and savings
resulting from less development activity on shuttle derivatives as a result of having the
small heavy lift launch vehicle. It may be noted that the large increase in HLLV factory
and tooling costs probably, in part, reflects an underestimate in tooling for the large
HLLV. The cost mode! has been updated since the original figures were developed and
now reflect higher tooling costs. In the recurring column, results include the cost.of SPS
hardware under SPS, the cost of transporting the additional SPS mass under Transporta-
tion, and the cost of construction opcration in the third column. Recurring cost for the
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— Table 2.4-1.  Small HLLV Cost Summary
| - o mne
BOOSTER ORBITER
AIRFRAE 1977 3120
MAIN ENGINE 1619 215
AUKILTARY PROPULSTON 151 2
SUBSYSTEHS ‘ Ce 3 381
GROUKD & FLIGHT TEST VEMICLES 704 525
| " ORBITER COMAONALITY CREDITS (DDTSE)
MAIN ENGINE | 0.95 (SSHE)
05 = 0.8 (OTV)
RCS 0.5 (SHUTTLE)
ELECTRIC POWER
AVIORICS © 07 (SHUTTLE)
EULSS : :
S PRODUCTION
BOOSTER - ORBITER
| | TR SLOPE TR SLOPE
AIRFRAKE & SUBSYSTEMS 178 187 85
MAIN ENGIE (6 PER STAGE) 32 18 .90
 AUXILIARY PROPULSION 45 51 .88
' . - (4 rea’n)
”e268
"BOOSTER ORBITER

Figure 2.5-1. Small HLLV Development Cast
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Table 2.5-2.  Cost per Flight (1500/yr)

. - COST IN MILLIOUS  (798)

PROGRAM SUPPORT . as

FLIGHT HARDWARE - 2359

* GROUND SYSTEM & OPS 0.3
TOOLING SYSTENS - 0.18

PROELLANT ; - © 0617

SITE MANPONER 0.612

- 4,231

ima-

1sog
FLIGHTS PER YEAR

e

GROUND
SYSTEN &
OPERATIONS

TOOLING
susTAINING  TOTALw. 4,231

Figure 2.5:2.  Small HLLV Cost per Flight
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Delta Cost Sum/hqry—&nall HLL 4

 NOHRECURRING

 RECURRING ,
sps  TRANSPORTATION  COWSTRUCTION

SATELLITE DESIGN CHANGES
- ) CARGO LOGISTICS

SMALLER CREW MODULES -
DDTat
INVESTHENT
TRANSPORTATION

- DDTRE _ ‘
FACILITIES INVESTHERY
. v _  FLEET INVESTHENT
L HLLV FACTORY
I LESS SHUTTLE MODS

ToTAL

230 (BASE CHANGES)
250.1

2521 >
3925 + 34,4

-3075
-3049

7%
1619

-3204
- =5000.6

[i=> INCLUDES CREDIT FROM DEMONSTRATION PHASE
[i>> TOOLING UKDERESTIHATED FOR LARGE HLLV?
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163 04 412

- R - 5.2 . -
) —~ : - . 132.1
— 1040 Caiiv) -
=400 {rrv)
16.3 730.4 . 1“1‘.!{2‘ -
© TOTAL = 887 ‘




small HLLV is higher than for thé large .one, but the small HLLV also accomplishes c}ew
rotation from Earth to low Earth orbit, resulting in a savings.
millions per year, about 440 millions per SPS, or roughly 3% increase per SPS.

D180-25969-5 -

2.6 CONCLUS!ONS/RECOMMENDATEONS'

In surhmary, the small HLLV has positive features and some negative features. Table 2.6-1
summarizes these positive and negative features. In general, the positive features outweigh
the negative features and it is recommended that the small HLLV be adOpted as an SPS :

reference s,lstem.

POSITIVE

e o o o

. HEGATIVE

.

LESS NORRECURRIHS COST: FORE CORAOHALITY WITH SHUTTLE
REDUCED KDISE & SONIC OVERPRESSURE o
LESS FACILITIES COST: GFFSHOTE PASS 1T R

SIZE &"?nﬂ"&!ﬂ" Fog AL FEF*%AU\«'E KISSIONS

CREY AS k”LL £S CARSQ DELIVE

SLIGHTLY HIGKER RECURRING COST

.+ GREATER MUMBER OF CONSTRUCTION CREN
s, HORE PROPELLANT CONSUMED .

KORE FREQUENT FLIGNTS
MORE EFFLUENT DEPOSITED IN UPPER ATHOSPHERE

Figure 2.6-1. Small HLLV Net Effects
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3.0 SHUTTLE-DERIVED SPS TRANSPORTATION

The g~°: of the shuttle-derived SPS transportation system concept was to minimize.
transp tion development cost. The question related to this goal was detertnination of

the recurring cost for SPS production if this transportation system were adopted.

3.1 Initial Concept -

- The concept involves use of shuttle orbiters and external tanks both for Earth-to-orbit and ’
for orbit-to-orbit transportation. In order to reduce costs and increase performance, a -

new booster is to be designed and developed. This concept was developed by Jim
Akkerman of the Johnson Space Center. An initial configuration was provided as a part of
the Phase Iil task statements. The configuration had certain known problems. First of
all, very little volume was availablé for SPS hardware payloads. These hardware payloads
are relatively low in density and require a large-volume payload bay to achieve efficient

~transportation operations. Further, the original concept included a redesign of the
‘satellite, -fairly complex construction operations, and raised certain questions as.to

whether the large sections of satellite built at low Earth orbit could be transported to
GEO. Thirdly, accommodations for crew .delivery for LEO to GEQ were not provided.
Finally, the system included a ballistic booster. Earlier studies of ballistic versus winged
boosters had indicated that winged systems would provide lower transportation costs due
to more rapid turnaround. S : : : ’ AR

" A revised configuration was developad that included a redesign of the external rank and

the use of a flyback booster. It had also been suggested that the orbiter be redesigned to
provide increased payload accommodations. This, however, appeared to be in conflict

- with the desired objective of minimizing development costs. If one were to redesign the
orbiter and provide a new booster, one would, in effect, have a small heavylift launch .. .. -

- vehicle. (That option.was reported in the previous section of this report).

Figure 3.1-1 shows the principal features of the modified system. Cargo space is provided
in the external tank. The shuttle cargo bay provides sufficient volume for personnel
accommodation. The flyback booster and interstage structure provide for launch of the

Cérgo is launched to low Earth orbit with the éonfigurétion illystrated. Sorne of the

external tanks with cargo space are to be used for orbit-to-orbit transportation.. These =
are provided with better thermal insulation for roughly a week's stay time“in low Earth " .

orbit. Additional launches with relatively conventional external tanks bring-propellant to =

- low Earth orbit to fill the orbit transfer ET systems. The relatively high performance of .0 .-G
- the large flyback booster allows the system to arrive in orbit with substantial propellant
_remaining in the externzl tank. This is

_ [his then transferred to the orbit transfer ET's until:
they are fully loaded with propellant. ' T e e e

In order to provide an adequate mass fraction for orbit transfer and allow the shuttle

orbiter to go along as a propulsion system and crew transfer system, several external
tanks are docked together end-to-end to provide a very large orbit trensfer system with -
great propellant mass. : : '

The principal featurs of the revised system are tabulated in Table 3.1- 1. Note that ti)%gée
types of external tanks are required. All cargo for launch from Earth to orbit is housed

- internally to the external tank payload bay. For orbit transfer, this is not necessary and
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.. SHUTTLE CARGO BAY FOR
- ADDED CARGO OR PERSONNEL

~ CARGO SPACE

, =03 . | " .
SN, = i |
é' e le ).\: : L. ;L ..' 'oc—;\t:]ﬂ

\_ NEM L0, UPPER DOAE -
\ . \ 2 \'wCKlNG HATCH fOR\.— £1YBACK BOOSTER

ORIGINAL L0, UPPER DOME

- TFLOWER PETAL NOSE FOR
TARIK-TO-TANK JOINIHG -

PROPELLANT TRANSFER
{TARK-YO-TANK OR -
ORBITER-TO-TANK)

. Figure 3.1-1. Modified Shuttle SPS Transportatian'System

"Cargo Launch Configuration

Tab!e 3.7-1. | ‘Feaiures of Revised System

o CARSO SPACE IN ET ALLONS DELIVERY OF
CARGO TO GED & ALL CONSTRUCTION AT GEO.

o ADEQUATE VOLWE CAN BE PROVIDED,
.. o' ORBITER BAY AVAILEBLE FOR PERSCHAEL
o THREE ET VERSIONS. |

(1) "REGULAR" - PROPELLANT DELIVERY TO LEO -

MODIFIED ONLY FOR PROMELLANT
- ACQUISITION AND TRANSFER .

(2) CARGO TO LEO - CARGO BAY ADDED
(3) LE0-GE0 |
o CARGO BAY
. o FLOWER PETAL NOSE
o BETTER INSULATION
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cargo brought to Earth orbit by those external tanks not conf igured for orbit transfér will

be stored externally to the orbit transfer ET's for the orbit transfer.

3.2 Analysis

A number of questions were raised as to how to configure this system for minimum cost.

The three principal variables are the booster size and attendant staging velocity, booster-

flyback optimization, and the number of external tanks to be provided for each transfer
flight. Crew accommodations in the orbiter were a secondary question. :

In order to conduct the optimization analysis, the ISAIAH Systems Modeling Software
System was employed. The ISAIAH software, in effect, allows one to very quickly develop
a computer program 10 analyze a complex systems model by standardizing those things
that normally cause most of the difficulty in developing computer models. Table 3.2-1
summarizes the features of this system. : , .

The- ISAJAH System operates with the computer network at the Boeing Kent Space
Center. The system is accessible through remote terminals and all card image files are
maintained on disk files to avoid card deck handling. The software runs on a large IBM

‘mainframe and plot files are transmitted to the interactive computer graphics facility for
rapid plotting of results. Figure 3.2-1 illustrates the computer network. E

The systems modet is summarized in'Figurcs 3,2-2 and 3.2-3. The segmem of the madel

_ shown in Figure 3.2-2 inchudes the booster flyback optirnization with principal variables

being the booster wing arsa, dry inerts, and the booster propeliant load and staging
velocity. The iterations implied in th2 network are handled automatically with the Isaiah
software. : R

The analysis of the upper stages is diagramned in Figure 3.2-3. As the ideal staging
velocity increases, the upper stage injected mass increases thus increasing the cargo mass
and the propeliant deliverable. However, as the ideal staging velocity InCreases, larger

- and larger boosters are required so one would expect a minimum cost point.

The next several figures shown modeling inputs that were incorporated into the model as

" Jookup tables. The estimated relationship of bogster wing mass to the boosier mass and

booster-wing area is showrn in Figure 3.2-4. This is a key relationship for establishing the
flyback optimization. » o

The staging rclative path angle decreases with increasing staging veloc'ziy as shown in
Figure 3.2-5; the path angle is important in establishing {lyback range.

Shown in Figure 3.2-6 is the relationship of relative staging velocity to ideal staging

" velocity.

The flyback range is composed of two principal components: the range at staging and the
coast range after staging. Shown in Figure 3,2-7 is the range at staging as a function of
ideal staging velocity, On the next Figure (3.2-3), the coast flyback range as a function
of path angle and inertial staging velocity are shown, : '

The booster theoretical first unit Cost is modeled as dependent upon the booster wet inert
weights (booster inerts including residual ascent propeliants but not including flyback
prop‘:uam). The model included learning curve refationships to altow the hooster average
unit cost to be computed {rom the theoretical first unit cost. The TFU is shown in Figure
3.2-9.
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Table 3.2-1. ISAIAH Descriptfon

® STAXDARDIZED, STRUCTURED PROCELURE AND JOFTMARE SYSTEM FOR
INTERRELATIONSHIPS AND SENSITIVITY ANALYSIS

WODELIRG NETHODOLOGY
INPUT LARGUAGE
INTERRAL LOGIC
DIAGROSTICS

GUTPUT FORMATTING
PLOT ROUTIKES

s o o » » ®

@ NIKETY PERCENT OF THE CODE AMD 9ST OF THE TROUBLE IH A LARGE
COSPUTER PROGRAM 1S IKPUT, OUTPUT, LOGIC STRUCTURE, AHD FILE
HAXDLING. THE RATIO IS SOHEWHAT WORSE IF COMPUTER GRAPHICS 1S
USED. WITH THE ISAIAM KETHGIOLOGY ALL OF THIS STLFF IS ALREADY
THERE AND DOZSH'T NEED CHANGIRG.

el Eod P | s P
- — - o
. MOREL us o
’ RLACRIPTION. KTS SCURCE CODES AND
@ 11 3032 - AKR JCh ®IMPUT FILES OK DISK

ISATAN PROCESSING
AKD ORJECT culE FILES

FILE MAINTERANCE
PLOT FILES LE PAINTEL

?'
N gt TYEXIEES
~ RS S rARg
@ REMOTE TERMINAL
FILE EDITING AND
JOB LAUNCH CONTROL

INTERACTIVE CORPUTER
GRAPHICS FACILITY

: Figure 3.2-1.  ISAIAH Computer Hookup
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03 /,(""-\Ag‘
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93
BOOSTER BOOSTER
PROPELLANT WING
LOAD AREA
—T] ]
| s ,
800SY BOOSTER BOSTER
PROPELLANT oAy wET sogsteR
cosY Aingrrs INERTS
7 ] T T
BOOSTER STAGING FLYBACK BOOSTER
RARDWARE V-10EAL INSTALLED FLYBACK
cosT THRUST FUEL
$00STER STAGING | STAGING COAST
€037 PER vf“f{_ fRELATIVE FLYBACK
FLIGHT PATH AKGLE RANGE
RANGE STAGING STAGING TOTAL
AT V- INERTIAL IMERTIAL FLYBACK
STAGING PATH ANGLE RAKGE
trotar |} [ﬁ | I
gcoosv:n:
L8
Figure 3.2-2. Shuttle-Derived System Optimization (Booster}
SeIENS - -
NO. OF ET'S ORBITER
1 STAGING ANKUAL PER TRANSFER T1E-uP
t V-IDEAL 4 RASS FLIGHT cosy
lewpmd L a
'y &
ENGINE . UPPLR STAGE ORBIT
BURK TIHE PRIECTED o TRANSFER
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FLIGHT CARGO RATIO
1 ;
£ ) i 1
ENGIAE ANNUAL O, PROPELLANY 1_” CAKGO MASS
LIfE 0F CARGOD  fmmr RENAINING . PER CARGO I+
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T -
,_._J { S
A -]
OREITER ARNUAL KO, . TAKK SCAR J
PERSORKEL PJ OF PROP, - AT FGR PIL
CAPACITY tLIGHTS i BAY
| % J
PROPELLANT KuKBER OF CARGE
FLIGKTS L JPROPECLANY b Q. £y oSy
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‘ LY.
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Figure 3.2-3.  Shuttle-Derived System Optimization (Upper Steges and Totsl)
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Figure 3.2.5. Model Inputs (Continued)
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ET costs were computed based on the theoretical first unit for the basic ET and on a delta
theoretical first unit for the additional mass of payload bay which in turn depends upon
the payload deliverable per flight. The delta TFU is shown in Figure 3.2-10. '
The propellant transferrable is dependent upon the propellant remaining at staging. For
relatively low values of propeliant remaining, very little propellant is transferrable since
most of it will be vaporized by the tank vapor residuals and the tank wall mass. The
model relationship is shown in Figure 3.2-11. ’

The next several figures summarize results.

The first run of the model examined the importance of booster wing area. Wing area was
found not to be a very important parameter as shown in Figure 3.2-13. T e

Large wing areas actually reduce booster start flyback inerts as the improvement of L/D
is more important than the increase in wing mass. This is shown in Figure 3.2-12.

The orbit transfer propellant-to-cargo is the kilograms of propellant per kg of orbit
transfer cargo. It improves with greater numbers of ET's but degrades with larger
boosters because the ET mass grows with increased cargo capacity. The trend is shown in
Figure 3.2-14, Figure 3.2-15 shows the variation in annual numbers of orbit transfer -
flights. Figure 3.2-16 shows the variation in orbiter personnel capacity for orbit transfer;
as expected, the trend is opposite to the numbers of flights. :

Figure 3.2-17 shows the annuél number of propéllaht launches. This is driven by the

- propeliant transferable and is a primary cost driver.

Displayed in Figure 3.2-18 is the total annual cost for construction of two SPS's per year
as a function of booster propeliant load and number of ET's per orbit transfer. It is
evident that large boosters are important and that using at least six ET's per orbit
transfer is desirable. : ' ‘

" The same resulfs ate displayed in Figure 3.2-19 in terms of cost per kilogram.

The previous case was rerun for larger booster propellant loads showing some additional
reduction in total annual cost up to 6,000 ton boosters as illustrated in Figure 3.2-20. The
total annual cost here is about twice that for the small HLLV whereas the booster size is
approaching the booster for the large HLLV which had a propeliant load of about 7,000
metric tons. : : : o :

3.3 CONCLUSIONS

A number of developmental requirements are necessary in order to implement the shuttle
derived system. These are summarized in Table 3.3-1. Secveral changes to the external
tank are required and orbiter crew accommodations of up to 30-40 crew are nceded for
the orbit transfer. These crew accomrmodations can be provided in the payload bay. A
new large booster is required and the orbiter/external tank flight operations technology
involved in transferring propellant and flying LEO to GEO orbit transfers must also be

" developed.

The most significant results relate to cost. The recurring cost for the shuttle-derived
systemn is estimated as about twice that of the small heavy jift launch vehicle and the
DDT&E, including the large booster and the ET mods is estimated at 60 to 70 percent of
the small heavy lift faunch vehicle. The shuttle derived system optimizes with payload to
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orbit per fiight in the range of 300 tonnes. This payload capacity is too large for many
other applications, a criticism also directed at the large SPS reference heavy lift launch
vehicle, ) ' : :

It is recommended that the small heavy lift launca vehicle be selected as the SPS
reference system. That small vehicle was described in the previous report section. The

_shuttle derived concept, however, should be retained as an option for further considera-

tion and reexamined in light of shuttle operating experience after a few shuttle flights
have been accomplished. , _
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4.0 ELECTRIC ORBIT TRANSFER VEHICLE (EOTV) ANALYSES
4.1 INTRODUCTION

The electric orbit transfer vehicle analysis conducted sensitivity studies relative to the
reference EOTV system. The principal subjects of investigation were thermal effects in
" low Earth orbits and the sensitivity of the vehrcle system design to the success of solar
array annealmg technology.

8.2 THERMAL EFFECTS

The ‘original analyses of the electric orbn transfer vehicle presumed that the solar array
output would be equivalent to that expected at geosynchronous orbit without significant
thermal radiation effects due to the proximity of the Earth, Much of the orbit transfer
propulsion operations, however, take place near the Earth where reflected solar radiation
and infrared radiation from the Earth raisc the so‘gar array temperature from the
geosynchronous orbit value of 40°C to as much as 70°C. The result is a reduction in
output from the solar array. Silicon solar cells have a temperature cocfficient of
approximately 0.4% per dcgrcc C. Thus, & 20°C increase in temperature reduces the
output by about 8%. ' R

Unlike power supplies for satellites where the supply output must always exceed the
demand from the satellite, an electric orbit transfer vehicle may be designed to utilize
whatever power output is available from the array. Consequently, in order to investigate
the significance of thermal effects, it was necessary to develop a simulation which
determined the output of the array as a function of orbit geometry and then applied this
output to thrust generation to simulate the orbit transfer mission with thermal effects, In
order to do this, thermal analyses were conducted to predict solar array temperature as a
function of orbit altitude and aspect angle, Results of these simulations are presented in
Figure 4.2-1. These results were incorporated into a table look-up that was made a part
of the orbit transfer simulation routine. The orbit transfer simulation was then used to
predict orbit transfer performance with thermal efi'cc:ts included.

'A second concern is the question of start-up time for the electric thrusters. Once the
EOTV emerges from the Earth's shadow, the solar array temperature must stabilize' and

. i the electric thrusters must be started be.orc- clectric propulsion for raising of the orbit

can commence. Estimates of the time required to start electric thrusters span a wide
range. The most reasonable estimates appear to be a timne delay of approximately 10
minutes., This is also consistent with the time required to siabilize the solar array
temperature after emergence from shadow, Therefore, a time delay of 10 minutes was
examined in the orbit transfer simulations to ascertain sensitivity of orbit transfer
performance to time delay. Figure 4.2-2 compares the orbit transfer performance with no
time delay or thermal effects to performance with thermal effects only, and to
performance with thermal and time dclay effects,

The range of solar array temperatures results from changes in orbit aspect. Every 400th
integration step is plotted; roughly every five revolutions of the Earth, For this reason
the temperature data look like a randem samphng Darkside temperatures were not
included in the table lookup as the electric thrust is “shut off" on the dark side by an
occuitation subroutine included in the simulation.

Chemical thrusters are used in the dark side to maintain attitude control. The thrust is

just sufficient to counter gravity gradients; the orbit is not raised by the chemical
thrusting. This non-impulse propeliant fiow reduces the effective specific impulse of the
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transfer. As the orbit altitude increases, the cumulative average specific .impulse
increases because shadowing and gravity gradients both decrease.

Thermal effects slightly increase the transfer time and slightly decrcase specific impulse
(the latter because the delivered electric impulse is slightly decreased while the chemical
is not). -

The ten-minute time delay is much more significant as may be seen from the figure. In
this case, the chemical impulse delivered is increased at the same time the electric is
decreased. ; : o ‘

These degradation effects may be expressed in terms of a correction factor that corrects
the trip time performance of the system for reduced output due to thermal effects and
increased trip time due to start-up delay effects. The estimated Isp correction factor
derived from these results was 0.785 (The actual Isp is 0.785 of the electric Isp

- considering thermal and time delay effects). Similarly, the actual trip time is extended

about 35% from the idealized, unocculted case. The systems analysis results employed
correction factors representing the combined effects of thermal and time delay.

4.3 MAGNETOSPHERE ALTERATIONS

Further speculation has been directed to the question of disruption or alteration of the
Earth's magnetosphere by the high-power electric propulsion plumes. It is not presently

known if this is & significant problem. If it is, substantial mitigation of the problem
~ should be available through use of hydrogen in place of argon as an electric propulsion

propellant and use of either arc jet or magnetoplasmadynamic (MPD) thrusters rather than
ion thrusters. The reasons are that hydrogen, unlike argon, is quite plentiful in the
magnetosphere and further, that the arc jet or MPD thrusters will produce a plasma
relatively little ionized compared to that expelled by argon ion engines. MPD thrusters
are expected to exhibit somewhat better efficiency at low specific impulse and poorer
efficiency at high specific impulse compared to ion thrusters. Figure 4.3-1 shows a
projection of MPD thruster performance. It may be compared with the ion engine
thruster performance estimate shown in Figure 4.4-6. :

6.4 PERFORMAMCE UPDATE

Systems analysis of the electric orbit transfer vehicle was conducted employing the

ISAIAH computer program routine for operation of an EOTV systems model. The
performance segment of the model was based on the generalized trip time equation
discussed in Appendix A. This trip time equation allows analysis of orbit transfer,

performance, mass, and cost based on c'osed form expressions employing iteration of

electric orbit transfer vehicle mass properties.

The most important part of the simulation is the transfer performance simulation. This is
diagrammed in Figure 4.4-1. The critical part of this computation network is the
determination of required jet power. The one-way mass ratio is computed from the
electric specific impulse, a specific impulse degradation factor determined by 6° of
freedom orbit transfer simulations that includes chemical attitude control in Earth's
shadow, and the one-way delta v. The electric propulsion power system is sized for the
available electric power at the beginning of the up trip. During the up trip, the available
electric power will be degraded as a result of passage of the vehicle through the Van Allen
radiation belts. Consequently, the trip time expression is divided into an expression

109

-




D

L AN b i o4

2 pesiree

R A s

P

THRSTER +#PU EFFICIRNCY

. D180-25969-5

60 b=

1 i i 1 i -
3000 - 4000 5000 6000 7000 8000
' DELIVERED SPECIFIC IMPULSE, SEC, '

Figure 4.3-1. MPD Performance Projection

110




SPS-3440

- D180-25969-5
4 7 3 1] it ;] 1e 1"
. QLAY & , COVER
1w VAY
ol o AETURMAP]  IynenMAL]  ELECTRIC e PRICA GLASS
ravioao| |T® 1 Inavio " foeeran- b jeouy | JORLTAL pLuence| | ycx
ant Tiase e facion | |facton v | HICK:
FACTON NESS
oy 4 n |
. DEGA. PLUENCE
1RAY
POWER MAsS PONER FOR
FUNCTION #1 RATIO- RATO J-DAY
FROM TRIP
03 018 03 1 PAIOB FL.
ur THAUSTER MAS3 " AETURN 013
YAl ”u RATIO TRIP ARRAY
FLUEKRCE EFFY 1 UNCTION ACCUM- MASS/
FLUENCE AREA
oy ¢ . paz
uP TAIP Jacounzo :::'mu n:u:mm -
IET POWER
h POWER 1AL RETURN
! L0G TR
020 ¢
FLURNCE TiME
* oesian :
£LEC 08 10
I} PowES .
o) l . AETURR ARRAY
028 - DEGRAD. OVE RSIZE
UP GEGRAD, 1 POWER e ACTOR
t1 PAYLOAD BATIO DESIGH ! 120
PORER : EOR
£
03z} a7 - STORAGE
D35 D34 ~ EFFY
T , t4A53 ARAAY  fo—LianaAY A
RETURN o] : ARRIVE |4 M58 "| AREA e
PROPELLANT PROTELEANT r GEO ¥ —1 NARAY
(1] AREA
| ek "lfAsaﬁs EFEY
YOTAL
PROPL LANT 036 o1 0
. | C  |eroreriany TOTAL TARRAY
SYGTEMS + 0TV ORER,
KASS A58 LEFFV

Figure 4.4-1: " EOTV Performance Model

111




D180-25969-5

relating that portion of the trip time that occurs prior to degradation and a second portion
that relates trip time subsequent to the radiation degradation effects. These segments of
the trip time expression are incorporated in a mass ratio function. :

A second important function is a power function dependent upon the required up trip time,
the time factors related to occulatation and thermal effects, and the electric specific
impulse and its degradation factor. The power function and the mass ratio function are
multiplied together with the electric orbit transfer vehicle mass, arriving at geosynchron-
~ ous orbit in order to determine the required jet power, This required jet power specifies
the -power required for the nth trip, (the first trip, the second trip, fifth trip, or
whatever). The vehicle design jet power is based on the first trip. Consequently, it is
related to required jet power through a power ratio derived from prior exposure to
radiation degradation and whatever annealing assumptions way be employed. The design
jet power is also translated to design electric power based on thruster and power
processor efficiency which in turn is based on the electric specific impulse. The design
electric power determines the mass of all elements of the electric propulsion system
- except the solar array. The solar array itself is designed to provide an initial or array -
design power that is based on no degradation, thus it is larger than the design electric
power by an additional degradation power ratio. The array design power determines the
array area and the latter then determines the array mass through incorporation of the
array mass per unit area, in turn a function of cover glass thickness. These mass
estimating factors allow determination of the total EOTV mass which is then fed to
calculation of the mass arriving at geosynchronous orbit which in turn is fed back to the
required jet power. The iterations implied in this network are handled automatically by
the ISAIAH methodology. - o S : - ’

Several of the input interrelationships were provided in the form of tables. kThese are
displayed in Figure 4.4-2 through 4.4-10. e

4.5 MASS AND COST ESTIMATES

‘The EOTV mass is calculated from high-level mass estimating factors relating the solar
array mass, the power processor mass, thruster mass, and auxiliary propulsion masses to
array ‘and’ design eléctric powers respectively. These masses are then apportioned to
lower level mass estimates as described in Figure 4.5-1. Cost estimating includes
consideration of investment cost, HLLV lift cost, and EOTV amortization and trip time
costs as diagrammed in Figure 4.5-2.

Four cases were investigated. The first is the reference EOTV case with 75 micron cover
glasses, argon ion thrusters with solar array annealing. The cost per kilogram results for
this case are illustrated in Figure 4.5-3, The second case examined was the same system
without solar array annealing. Array degradation is so rapid that one may expect no more
than 3 trips. The system cost with 3 trips was hand calculated as about 80/kg. ‘

Increasing cover glass thickness allows substantially more trips (up to 10). The fluence for
180 day trip as a function of cover glass thickness was presented in Figure 4.4-2, The
resulting cost effects are presented in Figure 4.5-4, This clearly shows that thicker
coverglasses are preferable to short life. :

_ Figure 4.5-5 shows the expected cost effects of the use of the MPD thrusters with-an
otherwise reference system, Figures 4.5-6 and -7 compare the cost effects on the
thick-cover argon ion system and the MPD system of the thermal and time delay effects
predicted from the orbit transfer simulation analysis.
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Finally, Figure 4.5-8 is a bar chart comparing costs of the various systems investigated to

a chemical orbit transfer vehicle system cost, all based ca the same HLLV launch cost .

, , estimates. Results of Figure 4-5-8 were taken for trip times near 180 days. Longer trips

’ - are somewhat more cost-effective for the penalized EOTV cases as was shown on the
earlier charts. o ‘ .

: - Additional data and plots from these studies are included in Appendix B.
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- 5.0 TECHNOLOGY

No new technology was developed as a result of this study. Three transpbrtation
technology recommendations were developed: :

L

z'.v

Hydrogen MPD arc jets appear to be viable as a backup propulsion mode for electric -
orbit transfer vehicles, should argon ion engines prove to be environmentally
detrimental. This conclusion is based on forecasts of MPD performance developed
by Princeton and JPL, with duty cycle assumptions developed by Boeing. EOTV
costs are sensitive to specific impulse and efficiency. For the hydrogen MPD
thruster to be a viable backup it needs an Isp of at least 5000 seconds and an
efficiency of at least 50%. (Present piojections exceed these targets). Furtherance
of MPD technology to provide a inore concrete assessment of capabilities is strongly
recommendad. ' - :

The EOTV was found to be very sensitive to electric propulsion start delays. A ten-

_ minute delay (after leaving Earth's shadow) increases LEO-to GEO costs almost

10%. Accordingly, research leading to minimal propulsion startup times is strongly
recommended. ; '

Further research on solar cell radiation degradation and annealing should be given
high priority. ' , ‘ .
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6.0 CONCLUSIONS

The shuttle derived transportation system' was found to be of sufficient interest to
be retained as an option for further consideration. Its launch-to-orbit cost
performance approaches that of a more conventional HLLV, but only at Jarge

_payload capabilities exceeding 250 tonnes. The orbit-to-orbit cost performance is

significantly less than that for the EQTV. : :
A "small" heavy lift launch vehicle was found to be highly attractive for SPS
transportation. Significant nonrecurring cost advantages are obtained with only

. minor recurring cost penalties. The specific vehicle analyzed has about the right

characteristics:

Payload Bay Volume 22 x |l meters cross-section
' 15 meters long

Lift Capability 125°tonnes to 500 km
C 30" orbit

Liftoff Mass - 4000 tonnes

This vehicle is compared with others in Figure 6-1.

The electric orbit transfer vehicle is a viabie 6ption without annealing. If annealing
cannot be developed, significantly more shielding (150 microns to 200 microns
coverglass) should be used to increase array lifetime. Thermal effects in low Earth
orbit are not very important; the effects of electric thrust start delays are more
significant. A ten-minute start delay leads to about a 10% cost penalty.

Hydrogen MPD arcjets can be used if argon ion engines prove unsuited for EOQTV use

because of magnetosphere effects. With present estimates of MPD performance,
the jon option provides about 10% better cost performance.

P
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7.0 RECOMMENDATIONS

Thé small HLLV should be adopted as the SPS reference launch vehicle,

A study should be performed to assess applicabitity of this small HLLV to alternate

- missions in the post-1990 period. The study should attempt to develop an evolution

strategy for national heavy-lift transportation capability, including interim systems

~ employing shuttle elements as well as shuttle improvements.

The shuttle-derived transportation option should be retained as a backup and
examined further after initial shuttle flight experience is obtained.

The electric orbit transfer vehicle (EOTV) should be retained as the reference orbit-
to-orbit cargo system. Three technology efforts were identified: :

a. Hydrogen MPD arcjets

b.  Rapid startup of electric propulsion

c.  Additional research on solar array radiation degradation and annealing
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ELECTRIC PROPULSION SYSTEMS ANALYSIS
USING THE TRIP-TIME>EQUATION

Presently cohtemp1ated app1icatfons of electric pfopu]sion include
planetary and comet missions and Earth orbital missions. Ahalysis of the
former is complicated by the fact that mission delta V and trip time are
interrelated; trajectories must be found and opt1m1zed by numerical integra-

‘tion. The mission delta V for Earth orbit missions, however, is essentially

independent of ‘trip time. Analyses that are good approximations (w1th1n a
few percent) are poss1b1e using closed- form equations

Delta V

The mission delta V for coplanar circular orbit transfers, e. g - :
LEO to GEO, is well- approximated by the Tsieu formula. This states that

" the low-thrust delta V to change orbits is just the difference in orbit

velocities. Example: the orbital velocity at-500 km altitude is 7613‘m/s{
The velocity at GEO is 3075 m/s. Hence the low-thrust delta V is 4538 m/s

If a b]ane change is required (as is usua]) the delta V calculation

.is-no. Tenger so simple.-- An .optimization is required because thrust -can be

used to change plane and altitude at the same time.

Retaining the circular orbit approkimation of Tsieu, one can perform
an explicit double integral to get delta V to change plane and altitude.
An optimal law for plane and altitude change yields about 5850 m/s for
orbit transfer from 30°, 500 km to geosynchronous orb1t 6000 m/s was used

~ for th1s analys1s

Trip Time Egpation

With the delta V for a given mission spec1f1ed, a very simple equat1on
can be derived to characterize the electric orbit transfer vehicle. It‘1s
often called the “trip ‘time equation." ‘
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It is the Tow-thrust ana]og of the Tsiolkovskii equation; it has the
same w1de app11cab111ty It is very simply derived as follows:

t= mp/ﬁp (trip time in seconds)
. where mp is propellant mass and ﬁp is mass flow rate.
Jet power is expressed as
~Pj = mpu /2
:where u 1s‘Jet velocity.
mp is therefore expressed as mp = 2p/u

Substituting in the previous equation,

= (mp/u” )(2py)
Emp1oy1ng now the definition of the terms]u.from the T5101kovsk11 equat1on

Hﬂ

e -_— = —
(meexp 85) = o~ p

where m is total startburn mass less propellant mass, and solving for mp;
- —_)
mp = w (iLLuﬂ‘/
Substituting.in- the above,- . .... . o :
T - m(,u~\) ur/(2 p3) = R () U2

where ¢ is the specific power-to-mass ratio of the total inert mass, in
kg/watt. If it is desired to show separately the propulsion vehicle and
payload mass, '

[} .
£ =S (B Y )u/ 2
W e ‘
where t is trip time in seconds,

t'is specific mass of the (empty) propulsion vehicle in kg per watt
of jet power, not including propellant,

HA‘*/MAQ, "is the ratio of payload to empty vehicle mass
pis expav/u,
u is jet velocity.

B S




'
B e

g e e s

D180-25969-5

~ APPENDIX A

Thus, this one relatively simple equation relates power production performance,

payload ratio, missionaAv, jet velocity, and trip time. Note that the

equation is in terms of jet power, i.e., cj = cé/n where n is net processor

~and thruster system efficiency.

The specific mass of the vehicle will vary somewhat with propellant
toad. It is possible to derive an expanded form of the trip time equation
that explicit]y includes the dependence of vehicle mass on propelland'Toad.
With the ISAIAh methodology, this is not necessary as the propellant system
mass can be computed from the propellant mass and fedback to the trip time
equation; the ISAIAH iteration procedure closes the loop. )

It is important, however, to include other effects: Isp degradation

- due to Earth shadowing and gravity gradients; trip time extension due to

Earth shadowing; and solar array power output degradation due to passage
through the Van Allen belts. '

The first two of these effects must be assessed by detailed flight
simulation. Results of the simulations can, however, be introduced into an

. electric 0TV systems model in the form of Vfinad]e factors." This is dene
" by dividihg the up-trip into two parts, a siepwise approximation to radiation

degradation.

Power available on up-trip is as sketched:

0ZPo

7 g22’3Po
i
oo ‘ '
ft— A V‘i N b ety AV2 P
|

where the ﬂz represents degradation from prfor trips, e.g., the down trip,
and perhaps earlier flights.
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~ Sloving forog,
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_ iTheveffective Isp, con51der1rq chemlca} thrusting during occu]ations,
is. I .
TeATer £l -6) :

‘where Als the correction to electric Isp for chemical thrust, 6 is a trip
- time extens1on factor and Mg and mc are electric and chemica] time-averaged - -
- mass flow rates R ST AT

N = _-.__.:‘IQ(‘-Q)
' >\A'g". \-()-&c&<:>

(@k)(c -@)
NG

' The t1me averaged mass flow is

B i, (1-0) e i, @ﬁ,. R

o= m(; (t~®+ch)

( @)(*- »UV
((-O) R
Yers

“‘
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Now we can wr'1te the trip time equation in two parts

W, (Mo le\,_ue

T, e
= 1~ 0
o Aps (5R)
: _ _ ‘ 2
T—;_ - WPL _ ,(Mb—\)/\/\sufe
ol ey -5\
" dPolcT>
where it is noted that . , T

B T *:.Q)l
We = P/, ‘ZPJ_</\ Ue

The ISATAH model was set up to solve for required Jet power at start of trip,

as a basis for estzmatmg the EOTV mass.

Trip time T, ‘"TL = (“uo, ')"/\ ‘/‘e | bar@/“;“é
G‘ZP‘)l T) QP\;L(‘Tv

but My M3

Mz = Moy arrive gro

and sz =Dy Pd" |

131




RS
B
1

- D180-25969-5

APPENDIX A _ |
Ma- DAL W My , (AL Ue Mg

S T |
| ‘QPJ‘(‘:@) 2@3\3'{( >
. due . I(ﬂa"“_’jﬂb ¢ (.-——-ﬂb"\):{Mow
ZZPJ-‘(‘*@ j _ O o
.. and solving for PJ '. " , required jet pov;er: N
B o | : . G-7) - o
v (- ﬂ’) : Z
P, = X%e [(ﬂ, l>/6< + ba_____ ' l>}anv
_ \,'. 2 @3 o _ q;} - -

where 77 is trip time sph’t factor? 0.35
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SELECTED EOTV DATA
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Ion engme EOTV with 150-micron (6-mil}) cell covers, no anneahng
No thermal degradatmon or time delay S .
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Ion engine EOTV with 150-micron (6-mil1) cell covers, no annealing,
- No thermal degradation or time delay. '
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- lon engine (reference) EOTY with 75-micron (3-mi1) cell cover§ anc
solar array annealing. No thermal degradation or time delay.
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MPD EOTV with 150-micron (6-mil) celT.covers, no anneaTing.
~Includes solar array thermal degradation and time delay.
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th 150-micron (6-mil) cell covers,
Includes solar array thermal degradation and startup delay.

05

PLoTERS

.\A\A\,L 11emy

"‘3)\@ RIS

e N L rareze

gy
L Sy

o
\f*kkf:k~“. use

"l"a .
EDAQIS Lt WIPRE LT
A

LE
!

he

Xl
UP TP rug

o5

(pavé

e

no annealing.

B0




